
National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

NASA Technical Paper 3491

Design Tool for Multiprocessor Scheduling and
Evaluation of Iterative Dataflow Algorithms
Robert L. Jones III
Langley Research Center • Hampton, Virginia

April 1995

Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement,
either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Acknowledgments

This paper has benefited from numerous discussions with Sukhamoy
Som of Lockheed Engineering & Sciences Company and Paul Hayes
of the Langley Research Center. Rodrigo Obando of Old Dominion
University and Asa Andrews of CTA, Inc., provided invaluable tech-
nical discussions during the software implementation of the Design
Tool. Asa Andrews developed the Graph-Entry Tool.

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

iii

 Contents

Nomenclature . v

Abstract. 1

1. Introduction . 1

2. Dataflow Graphs and Scheduling Diagrams . 2

3. Dataflow Graph Analysis . 6

4. Performance Metrics and Resource Requirements. .9

4.1. Critical Path Analysis. 9

4.2. Calculated Speedup . 10

4.3. Run-Time Memory Requirements . 10

4.4. Control Edges. 13
5. Design Tool . 17

5.1. Design Tool Use in Graph Optimization . 21

5.2. Case Study . 23

5.3. Algorithm Implementation Performance . 27
6. Tool Applications and Future Research . 28

7. Concluding Remarks . 29

Appendix—Implementation ofES Algorithm andLF Algorithm . 30

References . 35

Tables

Table 1. Summary of DFG Attributes for TBO = 333 clock units, TBIO = 667 clock units,
 andR = 3 . 17

Table 2. Design Tool Performance Results. 28

iv

Figures

Figure 1. Dataflow graph. 2

Figure 2. Single graph play diagram.ω = 600 clock units . 3

Figure 3. Linked-list graph representation . 4

Figure 4. Segmented single graph play diagram . 5

Figure 5. Total graph play diagram. TBO = 333 clock units. 6

Figure 6. Constructing the modified dataflow graph. 7

Figure 7. The modified dataflow graph equivalent of figure 1 . 7

Figure 8. Single graph play diagram showing slack time.ω = 600 clock units 9

Figure 9. Example function implementation . 10

Figure 10. Petri net representation of dataflow graph . 11

Figure 11. Petri model of self-loop circuit . 13

Figure 12. Diagrams with E C control edge. 13

Figure 13. Periodic behavior with E C control edge . 14

Figure 14. Periodic behavior with E C and B D control edges . 15

Figure 15. Equivalent MDFG model of figure 14(b) . 16

Figure 16. The design process . 18

Figure 17. Speedup display . 18

Figure 18. Metrics and SGP window displays . 19

Figure 19. TGP window . 19

Figure 20. Total resource envelope window . 20

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for
TBO = 300 clock units and TBIO = 600 clock units . 21

Figure 22. Adding a control edge by using SGP window . 22

Figure 23. Selecting the initial node of control edge . 22

Figure 24. SGP window with control edge E C. 23

Figure 25. Windows with control edge E C. 23

Figure 26. Windows with control edges E C and B D. 24

Figure 27. Optimized graph summary window of three-processor schedule shown
in figure 26(a) for TBO = 334 clock units and TBIO = 666 clock units. 25

Figure 28. DFG2 with initial token on forward-directed edge. 25

Figure 29. Speedup potential of figure 28 DFG. 25

Figure 30. Dataflow schedule of figure 28 for four processors . 26

Figure 31. Dataflow schedule of figure 28 for seven processors . 26

Figure 32. Graph summary of figure 28 for seven processors . 27

Figure 33. Test graph . 27

v

Nomenclature

AMOS ATAMM multicomputer operating system

ATAMM algorithm to architecture mapping model

Ci sum of node latencies inith circuit

CMG computational marked graph

relative data set associated with finish of task T

Di total number of tokens withinith circuit

relative data set associated with start of task T

DFG dataflow graph

DSP digital signal processing

d number of initial tokens on edge or within path

EF earliest finish time

ES earliest start time

TBO-relative finish time of task T

GVSC generic VHSIC spaceborne computer

Li ith element inL; latency ofith task

L set of task latencies

LF latest finish time

Mo initial marking of graph

MDFG modified dataflow graph

Ni ith node in DFG

OE output empty; number of initially empty output queue slots

OF output full; number of initially full output queue slots

P maximum data set number

PI parallel-interface bus

R total number of required processors

S speedup

TBO-relative start time of task T

SGP single graph play

SGPs-s steady-state single graph play

SGPt-s transient-state single graph play

SRE single resource envelope

Ti ith task inT

To maximum time per token ratio for all graph circuits

t time

T set of tasks

TBI time between inputs

TBIO time between input and output

TBIOlb lower bound time between input and output

Df T()

Ds T()

F T()

S T()

vi

TBO time between outputs

TBOlb lower bound time between outputs

TCE total computing effort

TGP total graph play

TRE total resource envelope

U utilization

VHSIC very-high-speed integrated circuit

∆ EF − LF for a given task

ω schedule length

partial ordering of tasks

1. Introduction

This paper describes methods capable of determin-
ing and evaluating the steady-state behavior of a class of
computational problems for iterative parallel execution
on multiple processors. The computational problems
must be capable of being described by a directed graph.
When the directed graph is a result of inherent data
dependencies within the problem, the directed graph is
often referred to as a “dataflow graph.” Dataflow graphs,
generalized models of computation, have received
increased attention for use in modeling parallelism inher-
ent in computational problems (refs. 1 through 3). This
attention can be attributed not only to the ease at which
dataflow graphs can model parallelism but also in their
amenability to direct interpretation of program flow and
behavior (ref. 4).

In this paper, graph nodes represent schedulable
tasks and graph edges represent the data dependencies
between the tasks. Because the data dependencies imply
a precedence relationship, the tasks make up a
partial-order set; that is, some tasks must execute in a
particular order, whereas other tasks may execute inde-
pendent of other tasks. When a computational problem or
algorithm can be described with a dataflow graph, the
inherent parallelism present in the algorithm can be
readily observed and exploited. The modeling methods
presented in this paper are applicable to a class of data-
flow graphs where the time to execute tasks is assumed
constant from iteration to iteration when executed on a
set of identical processors. Also, the dataflow graph is
assumed to be data independent; that is, any decisions
present within the computational problem are contained
within the graph nodes rather than described at the graph
level. The dataflow graph provides both a graphical and
mathematical model capable of determining run-time
behavior and resource requirements at compile time. In
particular, dataflow graph analysis is shown to be able to
determine the exploitable parallelism, theoretical perfor-
mance bounds, speedup, and resource requirements of
the system. Because the graph edges imply data storage,

the resource requirement specifies the minimum amount
of memory needed for data buffers as well as the proces-
sor requirements. Obtaining this information is useful in
allowing a user to match the resource requirements with
resource availability. In addition, the nonpreemptive
scheduling and synchronization of the tasks that are suf-
ficient to obtain the theoretic performance are specified
by the dataflow graph. This property allows the user to
direct the run-time execution according to the dataflow
firing rules (i.e., when tasks are enabled for execution) so
that the run-time effort is reduced to simply allocating an
idle processor to an enabled task (refs. 5 and 6). When
resource availability is not sufficient to achieve optimum
performance, a technique of optimizing the dataflow
graph with artificial data dependencies, called control
edges, is discussed.

Predicting the computing performance, resource
requirements, and processor utilization connected with
the execution of a dataflow graph requires the determina-
tion of steady-state behavior. Dataflow graph analysis
algorithms and rules are defined in this paper for deter-
mining the scheduling constraints, that is, earliest execu-
tion times and mobility, for all tasks under steady-state
conditions. It is also shown that certain initial conditions
represented by initial data in a dataflow graph may result
in a transient-state execution different from the
steady-state execution. The analysis algorithms are
shown to detect such transient conditions. The method
for determining periodic steady-state behavior is based
on first describing the execution of data associated with a
single computational iteration, referred to as a “data set.”
Second, the transient state is distinguished from the
steady state if necessary when initial data are present.
Finally, the periodic execution for multiple iterations is
determined from the steady-state single iteration
description.

For the mathematical models presented, an efficient
software tool which applies the models is desirable for
solving problems in a timely manner. A software tool
developed for design and analysis is presented. The soft-
ware program, referred hereafter as the “Design Tool,”

Abstract

A graph-theoretic design process and software tool is defined for selecting a
multiprocessor scheduling solution for a class of computational problems. The prob-
lems of interest are those that can be described with a dataflow graph and are
intended to be executed repetitively on a set of identical processors. Typical applica-
tions include signal processing and control law problems. Graph-search algorithms
and analysis techniques are introduced and shown to effectively determine perfor-
mance bounds, scheduling constraints, and resource requirements. The software tool
applies the design process to a given problem and includes performance optimization
through the inclusion of additional precedence constraints among the schedulable
tasks.

2

provides automatic and interactive analysis capabilities
applicable to the design of a multiprocessing solution.
The development of the Design Tool was motivated by a
need to adapt multiprocessing computations to emerging
very-high-speed integrated circuit (VHSIC) space-
qualified hardware for aerospace applications. In addi-
tion to the Design Tool, a multiprocessing operating sys-
tem based on a directed-graph approach called the
ATAMM multicomputer operating system (AMOS) was
developed. AMOS executes the rules of the algorithm to
architecture mapping model (ATAMM) and has been
successfully demonstrated on a generic VHSIC space-
borne computer (GVSC) consisting of four processors
loosely coupled on a parallel-interface (PI) bus (refs. 5
and 6). The Design Tool was developed not only for the
AMOS/GVSC application-development environment
presented in references 5 and 7 but for other potential
dataflow applications. For example, the design proce-
dures based on ATAMM solve signal processing prob-
lems addressed by Parhi and Messerschmitt in
reference 3. (See ref. 8.) Information provided by the
Design Tool could also be used as scheduling constraints
as done in reference 9 to aid other scheduling algorithms.

The modeling of a computational problem with a
dataflow graph and analysis diagrams is discussed in
section 2. A forward-search algorithm is defined and is
shown to determine the earliest execution times for all
tasks. Section 3 discusses a modification to the dataflow
graph described in section 2, which lends itself to
the modeling of initial conditions. In addition, a
backward-search algorithm is defined and shown to
determine the mobility of the tasks and transient condi-
tions which affect the steady-state behavior. The perfor-
mance metrics and resource requirements procedures
implemented in the Design Tool are described in
section 4. The memory requirements of data shared
among tasks, as described by a directed graph, is shown
to be bounded. Rules for determining the minimum
memory requirements for buffering-shared data are
defined. The Design Tool displays and features are pre-
sented in section 5 where the performance results are
compared with the theoretical results derived in the pre-
vious sections. Section 5 also presents execution time
results regarding the Design Tool implementation of the
algorithms presented in sections 2 and 3. Applications
and future research are summarized in section 6.

2. Dataflow Graphs and Scheduling Diagrams

A generalized description of a multiprocessing prob-
lem and how it can be modeled by a directed graph is
presented in this section. Such formalism is useful in
defining the graph analysis algorithms and rules which
determine scheduling constaints. A computational prob-
lem (job) can often be decomposed into a set of tasks to

be scheduled for execution (ref. 10). If the set of tasks are
not independent of one another, a precedence relation-
ship is imposed on the tasks in order to obtain correct
computational results. A task system can be represented
formally as a 4-tuple (T, , L, Mo) where

T set ofn tasks to be executed, {T1, T2, T3, ...,Tn}

precedence relationship onT such thatTi Tj
signifies thatTj cannot execute until completion
of Ti

L nonempty, strictly positive set of run-time laten-
cies such that taskTi takesLi amount of time to
execute, {L1, L2, L3, ...,Ln}

Mo initial state of system, as indicated by presence
of initial data

Such task systems can be described by a directed
graph where nodes (vertices) represent the tasks and
edges (arcs) describe the precedence relationship
between the tasks. When the precedence constraints
given by are a result of the dataflow between the
tasks, the directed graph is referred to as a “dataflow
graph (DFG)” as shown in figure 1. Special transitions
called sources and sinks are also provided to model the
input and output data streams of the task system. The
presence of data is indicated within the DFG by the
placement of tokens. The DFG is initially in the state
indicated by the markingMo. The graph moves through
other markings as a result of a sequence of node firings
(executions); that is, when a token is available on every
input edge of a node and sufficient resources are avail-
able for the execution of the task represented by the
node, the node fires. When the node associated with task
Ti fires, it consumes one token from each of its input
edges, delays an amount of time equal toLi, and then
deposits one token on each of its output edges. Sources
and sinks have special firing rules; sources are uncondi-
tionally enabled for firing, and sinks consume tokens but

Figure 1. Dataflow graph.

A C F

B

D E

SinkSource 100 100 100

400

100200

Node
Latency

Edge

Token

3

do not produce any. By analyzing the DFG in terms of its
critical path, critical circuit, dataflow schedule, and the
token bounds within the graph, the performance charac-
teristics and resource requirements can be determined
a priori. The Design Tool depends on this dataflow repre-
sentation of a task system, and the graph-theoretic per-
formance metrics presented herein.

The graph execution for a single iteration, unlimited
resources assumed, can be portrayed with a Gantt chart
where horizontal bars are used to indicate when tasks
may be scheduled for execution. Such a chart is referred
to hereafter as a “single graph play (SGP) diagram,”
which is shown in figure 2 for the DFG of figure 1. The
SGP can be constructed by calculating the earliest start
(ES) times for all tasks. The ES times can be calculated
by envisioning the migration of a single data set through
the graph. Since the condition for a node to fire (begin
execution) is having a token present on all its inputs, the
ES time for a given task is equal to the longest path
latency (starting from the source) for all paths leading to
its inputs. The longest input path latency would indicate
the time at which all input tokens would be present for
execution. The amount of time required for all nodes of a
graph to execute a single data set or graph iteration is
referred to as the schedule length, denoted asω. For gen-
erality, the task latencies shown in figure 1 are given in
clock units , and therefore the schedule length is
shown in figure 2 to be equal to 600 clock units.

The two algorithms, defined in this paper, that
implement a forward and backward search of the directed
graph and other analyses are based on a linked-list repre-
sentation of the graph. In this way, pointers can be used
for efficient progression through the graph from any
given starting point. An example illustrating the connec-
tions between node objects and edge objects is shown in
figure 3. The object address pointers are denoted by

Figure 2. Single graph play diagram.ω = 600 clock units.

F

E

D

C

B

A

100 200 300 400 500 600
Time, clock units

asterisks. A node object points to just oneinput and
oneoutput . All other input and outputs are connected
to the node by thenext input and next output
pointers. Anull pointer indicates that no other input or
output exists.

Given a linked-list graph representation as shown in
figure 3, the following forward-search algorithm deter-
mines the earliest start times for all nodes (tasks). The
algorithm employs the depth-first searching method
where the graph is penetrated as deeply as possible from
a given source before fanning out to other nodes. For
each node encountered in the search, the algorithm calls
the procedureSearchFwd recursively for each output
edge associated with the node. The recursive nature of
the algorithm allows a depth-first search of the graph to
be done while implicitly retaining the next edge (starting
point for the next path to traverse when fanning out) and
accumulated path latency on the memory stack. The
arguments passed intoSearchFwd are an address
pointer (edge) to an edge structure (fig. 3) and the cur-
rent path latency (path_latency) up to theedge .
Also, letnode specify a pointer to a node structure. An
edge will point to anext_output if present, and will
be null if no other output edges for the currentnode
exist. TheES Algorithm is stated as follows:

A. Initialize earliest start times for all nodes to
zero

B. Execute procedureSearchFwd (source.
output , 0) for every source in graph by start-
ing with first output edge of source; path
latency, the second parameter, initially set to
zero

SearchFwd (edge , path_latency)

1. If edge.next_output is not null,
call SearchFwd (edge.next_out -
put , path_latency).

2. Get the node that uses thisedge for
input by setting node equal to
edge.terminal_node .

3. Determine the earliest start ofnode ,
ES (node), such that ES (node) = max
[ES (node), path_latency].

4. Increasepath_latency by thenode
latency,Lnode.

5. Setedge equal to the first output edge of
node , edge = node.output .

6. If a sink has been reached (edge = null),
return from this procedure; else repeat
Step 1.

4

(a) Example graph.

(b) Linked-list representation.

Figure 3. Linked-list storage of dataflow graph.

A D

B

C

OI

Node B

Input*
Output* Edge B-D

Initial*
Terminal*

Next_Input*
Next_Output*

Node D

Input*
Output*

Edge D-O

Initial*
Terminal*

Next_Input*
Next_Output*

Sink O

Input*
Output*

Edge C-D

Initial*
Terminal*

Next_Input*
Next_Output*

Node C

Input*
Output*

Edge A-C

Initial*
Terminal*

Next_Input*
Next_Output*

Node A

Input*
Output*

Edge A-B

Initial*
Terminal*

Next_Input*
Next_Output*

Edge I-A

Initial*
Terminal*

Next_Input*
Next_Output*

Source I

Input*
Output*

Null

5

TheES Algorithm execution time is graph depen-
dent and is bounded by

(1)

whereNi is the number of nodes in a given path. Because
the number of paths in a given graph with at most
N nodes is bounded byN2, the expression (eq. (1)) has a
worst-case bound ofN3. Therefore, theES Algorithm
has a polynomial-time complexity of the order ofN3, or
O(N3).

The elapsed time between the production of an input
token by the source and the consumption of the corre-
sponding output token by the sink is defined as the time
between input and output (TBIO). When initial tokens
are not present,ω will be equal to TBIO, otherwiseω
may be greater than TBIO. As discussed later, the SGP
determined by the ES analysis given by theES Algo-
rithm when initial tokens in the forward dataflow
direction are present may not be representative of the
steady-state behavior, SGPs-s, at run time but instead por-
trays a transient state, SGPt-s. Refinements to the com-
puted earliest start times may be required to obtain the
SGPs-s. A method for determining these refinements is
included in the next section.

Bound Ni
Over all paths in DFG

∑=

Of particular interest are the cases when the algo-
rithm modeled by the DFG is executed repetitively for
different data sets. The iteration period and, thus,
throughput is characterized by the metric TBO (time
between outputs) where TBO is defined as the time
between consecutive consumptions of output tokens by a
sink. It can be shown that because of the consistency
property of dataflow graphs, all tasks execute with period
TBO (refs. 11 and 12). This implies that if input data are
injected into the graph with period TBI (time between
inputs) then output data will be generated at the graph
sink with period TBO equal to TBI.

The periodic graph execution for multiple iterations
can be portrayed in another Gantt chart referred to as a
“total graph play (TGP) diagram.” The TGP diagram
shows the execution over a single iteration period of
TBO. Like the single graph play diagram, the total graph
play diagram represents task executions with horizontal
bars. The TGP can be constructed from the SGP by
dividing the SGP into segments of width TBO starting
from the left of the diagram. The resulting SGP from the
previous example for an arbitrarily selected TBO period
of 333 clock units is shown in figure 4. Each segment is
representative of the execution associated with a particu-
lar data set when the graph is executed periodically.

Figure 4. Segmented single graph play diagram.

F

E

D

C

B

A

100 200 300 400 500 700

Time, clock units

600

TBO = 333 clock units

2 1

6

Consequently, these segments are assigned relative data
set numbers, 1 toP, from right to left. Overlapping these
segments portrays the graph execution for multiple data
sets within a TBO period as shown in figure 5. Note that
the relative data set numbers assigned to the task bars
within the TGP of figure 5 correspond to the numbered
SGP segments of figure 4. The fact that within a TBO
period, every task will execute exactly once is obvious
from the nature of how the TGP is constructed by over-
lapping TBO-width segments from the SGP. The total
computing effort (TCE) within a TBO interval from SGP
segments would therefore equal the sum of all task laten-
cies within the latency setL.

Constructing the TGP by overlapping SGP segments
is equivalent to mapping the ES times (relative to the
SGP) to a time interval of width TBO by using the map-
ping function ES modulo TBO. The number of SGP seg-
ments is equal to the maximum number of data sets
simultaneously present in the graph at steady state and
indicates the level of pipeline concurrency that is being
exploited. This metric is given by applying the ceiling1

function to the ratio of the schedule lengthω to TBO as
shown in the following equation:

(2)

1The ceiling of a real numberx, denoted as , is equal to the
smallest integer greater thanx.

Figure 5. Total graph play diagram. TBO = 333 clock units.

F

E

D

C

B

A

t t + TBO

33.3
1

21

2

2

1

2

2

x

P ω
TBO
------------=

By numbering the SGP segments 1 toP from right to left,
a relative data set numberedD will refer to a data set
injected into the graph 1 TBO interval after a data set
numbered . Overlapped bars for a given task indi-
cate that the task has multiple instantiations as for task B.
That is, the task is executed on different processors
simultaneously for different data sets. Allowing multiple
task instantiations is a key mechanism for increasing
speedup.

The inherent nature of dataflow graphs is to accept
data as quickly as the graph and available resources (pro-
cessors and memory) allow. When this occurs, the graph
becomes congested with tokens waiting on edges for pro-
cessing because of the finite resources available, without
resulting in an increase in throughput above the
graph-imposed upper bound (refs. 2 and 13). When
tokens wait on the critical path for execution, however,
an increase in TBIO above the lower bound occurs. This
increase in TBIO can be undesirable for many real-time
applications. It is therefore necessary to constrain the
parallelism that can be exploited in order to prevent
resource saturation. Constraining the parallelism in data-
flow graphs can be controlled by limiting the input injec-
tion rate to the graph. Adding a delay loop around the
source makes the source no longer unconditionally
enabled (ref. 5). It is important to determine the appropri-
ate lower bound on TBO for a given graph and number
of resources. Determination of the lower bound on TBO
is deferred to section 4.

3. Dataflow Graph Analysis

In the absence of initial tokens within the graph, a
latest finish (LF) time analysis would be similar to the
depth-first searching method used to calculate the earliest
start times, only in the reverse direction. That is, search-
ing backward from all sinks, the latest time each task
associated with an encountered node must complete in
order to prevent an increase in the TBIO given by the ES
time analysis can be determined. The latest finish time
for a given task is equal to TBIO (for a given sink) less
the maximum path latency to the associated node output
from all possible paths leading backwards from the sink.
The combination of earliest start and latest finish times
provide the means to calculate the float or slack time that
might be present for each task. Slack time indicates the
maximum delay in task completion that can be tolerated
without delaying the start times of successor tasks which
result in an increase in TBIO. Slack time for a task is
given by

(3)

with latencyL.

D 1–

Slack time LF Ti() ES Ti()– Li–=

7

When initial tokens are present within the graph, the
ES and LF analysis presented here must be modified
slightly. The method for determining the steady-state
behavior of a dataflow graph when initial tokens are
present is based on a simple extension to the earliest start
time analysis described in the previous section and a lat-
est finish time analysis to be discussed here. It will be
shown in later examples that initial tokens within the
DFG not only affect the calculations of ES and LF times
but may also be associated with recurrence loops (result-
ing in graph circuits), which tend to complicate the graph
search process. Modifications to the dataflow graph,
which simplify the analysis, are defined here and can be
shown to result in an equivalent model of the original
graph. This modified dataflow graph is referred hereafter
as the MDFG.

The MDFG can be constructed by letting all edges
with one or more initial tokens undergo the transforma-
tion shown in figure 6 where such edges are terminated
with “virtual” sinks. Each virtual sink is labeled with the
identifier of the node that consumes tokens from the orig-
inal edge. In the cases where all input edges of a node
have initial tokens, a virtual source for each such node is
added so that the node is not left dangling without an
input edge. The addition of these virtual sources main-
tains compatibility with theES Algorithm . The result-
ing MDFG of the dataflow graph in figure 1 is shown in
figure 7.

The MDFG can now model the more complex prob-
lem containing initial tokens but in a simpler, linear
(source to sink) fashion. Now, the same ES analysis from
all sources to sinks can be conducted as before. However,
in order to ensure that the new MDFG is equivalent to
the original dataflow graph, an additional time constraint
must be imposed on the graph at these virtual sinks.
Referring to figure 6, the time constraint is defined as
follows:

(4)

where LF(Ti) represents the LF time ofTi due to the ini-
tial tokens, ES(Tt) represents the ES time ofTt, andd is
the number of initial tokens on theTi Tt edge. Stated
in words, equation (4) determines the latest finish time of
taskTi which returns a token on the edge initialized with
d tokens such that the firing of taskTt will not be
delayed. The ES(Tt) is determined by theES Algo-
rithm starting from all MDFG sources. If equation (4)
results in a LF timeless than the earliest finish (EF) time
of Ti, a time constraint has been violated. Since a task
cannot complete execution sooner than its earliest finish
time (as determined from the ES analysis), a transient
condition has been detected. For the first iteration, the
graph will execute according to the SGPt-s as defined by

LF Ti() ES Tt() d TBO()+=

the ES Algorithm . However, since the next data set
will arrive 1 TBO interval later, an additional time con-
straint will be imposed if initial tokens exist in the graph.
The nodeTt with d initial input tokens has the potential
(depending on other input dependencies) of repeated fir-
ings until alld tokens are consumed. With each node fir-
ing with period TBO, the elapsed time to consume
d tokens is the product ofd and TBO. The predecessor
nodeTi must return a token withind(TBO) time relative
to the ES so that the next firing ofTt is not delayed.
Therefore, in order for nodeTi to generate its first token
in this timely manner which maintains the task schedule
defined by the first iteration SGPt-s, it must do so by the
time determined by equation (4). Otherwise, the firing of
nodeTt will be delayed, resulting in .

Now that it has been shown that timing conflicts
determined by equation (4) indicate the presence of a
transient state, , a method is needed to
translate the to the . By adjusting the ear-
liest start times of the nodes affected by this delay, the
steady-state behavior when initial tokens are present can
be determined. When equation (4) indicates a timing

Figure 6. Constructing the modified dataflow graph.

Figure 7. The modified dataflow graph equivalent of figure 1.

Ti Tt

Ti Tt

d

d

Tt

Ti Tt

Ti Tt

d

d

Tt

Virtual
source

Virtual
sink

A C F

B

D E

100 100 100

400

200 100

D

Virtual sink

SGPs-s SGPt-s≠

SGPt-s SGPs-s≠
SGPt-s SGPs-s

8

conflict, determine the time difference between the result
of equation (4), LF(Ti), and the earliest finish of theTi,
EF(Ti) = ES(Ti) + Li, and denote this difference by∆,

(5)

The method to translate the to the sim-
ply involves adding∆ to the ES time ofTt. An ES time
analysis is then conducted again on the graph nodes con-
tained in the paths dependent onTt. After completing this
ES time adjustment, an LF time analysis is required as
before for all paths backward from the sinks. This pro-
cess is repeated until no time conflicts are detected by
equation (5); that is, . The following algorithm
determines both the LF times and the transient adjust-
ments to the ES times and accounts for initial token tran-
sients as described above.

Given the linked-list graph representation shown in
figure 3, a depth-first search algorithm that employs the
same method used by theES Algorithm (only in the
reverse direction) will determine the latest finish times
for all nodes (tasks). The algorithm calls the procedure
SearchBkwd recursively for each input edge. As with
the ES Algorithm , the recursive nature of this
backward-search algorithm results in a depth-first search
of a graph from sinks to sources while implicitly retain-
ing the next edge (starting point for the next path to
traverse when fanning out) and accumulated path latency
on the memory stack. The arguments passed in to
SearchBkwd are an address pointer (edge) to an edge
object in figure 3 and a latency value (path_
latency). This latency value is defined as the TBIO at
the starting sink less the sum of node latencies along the
current path from the sink up to an encountered node. As
in the SearchFwd procedure, letnode specify a
pointer to a node structure of figure 3. Anedge will
point to anext_input if present, and will be null if no
other input edges for the currentnode exist. The itera-
tive nature of theLF Algorithm for the cases where
initial tokens are present within the DFG requires the
inclusion of a boolean condition. The boolean condition
Done in theLF Algorithm indicates when the process
of determining LF times for all nodes is complete. The
LF Algorithm is stated as follows:

A. Initialize all LF times of tasks inT to maxi-
mum storage value and setDone = False.

B. While notDone Loop through to Step K.

C. SetDone to True and repeat Step D for every
sink in the graph.

D. If the sink is not virtual, set LF equal to the
earliest start of the sink (already established
by theES Algorithm) and skip to Step J;
else determine the terminal node,Tt, of the

∆ EF Ti() LF Ti()–=

SGPt-s SGPs-s

∆ 0≤

edge with the initial token and set LF equal to
ES(Tt) + d(TBO) where ES(Tt) is the earliest
start ofTt, d is the number of initial tokens,
and TBO is the iteration period.

E. Set∆ equal to earliest finish ofTi minus LF.

F. If ∆ is less than or equal to zero go to Step J;
else setDone to False.

G. Increase the earliest start ofTt by ∆.

H. Call the procedureSearchFwd (Tt.output ,
ES(Tt) + Lt) of theES Algorithm in order
to propagate the∆ time shift for all descen-
dent nodes ofTt.

I. Increase LF by∆.

J. Call the procedureSearchBkwd (sink .
input , LF).

K. Loop untilDone.

SearchBkwd (edge , path_latency)

1. If edge .next_input is not null, call
SearchBkwd (edge .next_input ,
path_latency).

2. Get the node that uses thisedge for
output by setting node equal to
edge .initial_node .

3. Determine the latest finish ofnode , LF
(node), such that LF (node) = min
[LF (node), path_latency].

4. Decrease path_latency by the
node latency,Lnode.

5. Setedge equal to the first input edge of
node , edge = node .input .

6. If a source has been reached (edge =
null), return from this procedure;
else repeat Step 1.

Since the method just presented to translate the
 to the is recurrent, one may question if a

solution exists for all cases. This is important since, if a
solution does not exist, the method would hang in an infi-
nite loop. The answer is yes, there is a solution. The
proof lies in the fact that the only potential problem
results when circuits with initial tokens are present in the
dataflow graph. If adjustments were made to the ES
times of the nodes dependent on the edge initialized with
tokens that eventually led back to the original edge (due
to a circuit) with a new EF time, the new EF time would
again cause a conflict in equation (4), and the process
would repeat indefinitely—a run-away condition. Such a
condition implies that nodes firing on tokens propagating

SGPt-s SGPs-s

9

through such a circuit could not produce a token on the
initialized edge in a timely manner. It has been shown
that the minimum graph-theoretic iteration period,To, is
given by the ratio of theith circuit latency,Ci, to the
number of tokens in the circuit,Di for all circuits within
the DFG (refs. 3, 9, 11, and 14):

(6)

Equation (6) determines the minimum time in which
tokens can propagate through a circuit in one periodic
cycle and thus establishes a lower bound on TBO. The
only way this algorithm would fail to complete is if the
TBO of equation (4) is less than its lower boundTo given
by equation (6). Since TBO cannot be less thanTo, such
a timing conflict cannot occur and thus the ES/LF algo-
rithms previously presented will always have a solution.

As an alternative approach, the steady-state ES times
could be determined during the forward search of the
graph by applying equation (4) (solving for ES(Tt) with
LF(Ti) set equal to the path latency) whenever encounter-
ing forward-path initial tokens. After determining all
steady-state ES times, the LF times could then be calcu-
lated without requiring any further adjustments to the ES
times, resulting in a one-time pass of the graph in the for-
ward and backward direction. The algorithms are pre-
sented in the potentially recurrent form for the purpose of
efficiently handling the frequent cases. That is, applica-
tion of equation (4) (solved for ES(Tt)) would be
required each time an edge with initial tokens was
encountered by traversing multiple paths that may con-
verge on the edge. Use of equation (4) once when begin-
ning with a virtual sink would tend to minimize its use.
Also, it is felt that the frequent cases involve uninitial-
ized edges or initialization of recurrence loops (no
forward-path tokens). Thus, this only requires the
one-time use of equation (4) by theLF Algorithm for
the purpose of calculating slack time within the recur-
rence loop. Like theES Algorithm , the time complex-
ity of the LF Algorithm is bounded by equation (1).
Thus, theLF Algorithm can also be executed in poly-
nomial time with a worst-case bound ofO(N3).

Applying the LF Algorithm to the DFG of
figure 1 for a TBO of 333 clock units is shown in
figure 8. As expected, the slack time of task C extends all
the way to the start time of task F. This would also be the
case for task E if it were not for the initial token on the
E D edge. Because of this token, the slack time of
task E extends out only 33.3 clock units for the current
iteration period of 333 clock units. The fact that this
slack is associated with the next iteration of task D is
apparent from the TGP diagram of figure 5 where the

To max
Ci

Di

for all i th circuits()=

time between the completion of task E and the start of
task D is equal to 33.3 clock units.

4. Performance Metrics and Resource
Requirements

The two types of concurrency that can be exploited
in dataflow algorithms can be classified as parallel and
pipeline. The TBO and TBIO performance metrics
defined in the previous sections are important in evaluat-
ing the efficiency of the algorithm execution, that is, how
well the inherent parallelism within the algorithm is
being exploited. Therefore, it is important to determine
the bounds on these metrics which define the optimum
scheduling solution.

4.1. Critical Path Analysis

Parallel concurrency is associated with the execution
of tasks that are independent (no precedence relationship
imposed by). The extent to which parallel concur-
rency can be exploited is dependent on the number of
parallel paths within the DFG and the number of
resources available to exploit the parallelism. The TBIO
metric in relation to the time it would take to execute all
tasks sequentially can be a good measure of the parallel
concurrency inherent within a DFG. If there are no initial
tokens present in the DFG, TBIO can be determined with
the traditional critical path analysis, where TBIO is given
as the sum of latencies inL along the critical path. When
Mo defines initial tokens in the forward direction, the
graph takes on a different behavior as represented by the
new paths within the MDFG. Cases such as this include
many signal processing and control algorithms where ini-
tial tokens are expected to provide previous state infor-
mation (history) or to provide delays within the
algorithm. For the example shown in figure 9, the task
outputz(n) associated with thenth iteration is dependent

Figure 8. Single graph play diagram showing slack time.ω =
600 clock units.

F

E

D

C

B

A

100 200 300 400 500 600
Time, clock units

Slack time

10

on the current inputx(n), input provided by
the th iteration, and input produced
by the th iteration.

Implementation of this function would required1 ini-
tial tokens on the edge andd2 initial tokens
on the edge in order to create the desired
delays. In such cases, the critical path and thus TBIO are
also dependent on the iteration period TBO. For exam-
ple, given that a node fires when all input tokens are
available, assuming sufficient resources, the earliest time
at which the node shown in figure 9 could fire would be
dependent on the longest path latency leading to either
the or edge. Assuming that thed1 and
d2 tokens are the only initial tokens within the graph, the
time it would take a token associated with thenth itera-
tion to reach the edge would equal the path latency
leading to the edge. Likewise, the minimum time
at which the “token” firing thenth iteration on the

 edge could arrive from the source equals the
path latency leading to the edge. However,
since this “token” is associated with the th itera-
tion (producedd1 (TBO) intervals earlier), the actual
path latency referenced to the same iteration is reduced
by the product ofd1 and TBO. From this example, it is
easy to infer that the actual path latency along any path
with a collection ofd initial tokens is equal to the sum-
mation of the associated node latencies less the product
of d and TBO. Thus, the critical path (and TBIO) is a
function of TBO and is given as the path from source to
sink that maximizes the following equation for TBIO:

(7)

whered is the total number of initial tokens along the
path. It is easy to see that the critical path for the DFG in
figure 1 is A B F, resulting in a TBIO of
600 clock units.

Figure 9. Example function implementation.

* z(n)x(n)

d1 y(n-d1)

w(n-d2)

d2

z(n) = x(n) * y(n-d1) * w(n-d2)

y n d1–()
n d1–() w n d2–()

n d2–()

y n d1–()
w n d2–()

x n() y n d1–()

x n()
x n()

y n d1–()
y n d1–()

n d1–()

TBIO = max Li
i L∈
∑

 d TBO()– for all paths()

4.2. Calculated Speedup

Pipeline concurrency is associated with the repetitive
execution of the algorithm for successive iterations with-
out waiting for earlier iterations to complete.
Equation (6) defines the lower bound iteration periodTo
due to the characteristics of the graph alone. That is, if
circuits are present in the DFG,To is given by
equation (6), otherwiseTo is zero. Given a finite number
of processors, however, the actual lower bound on itera-
tion period (or TBOlb) is given by

(8)

where TCE (total computing effort) is the sum of laten-
cies inL,

(9)

andR is the number of available processors. The theoret-
ically optimum value ofR for a given TBO period,
referred to as the calculatedR, is given as

(10)

Since every task executes once within an iteration period
of TBO withR processors and takes TCE amount of time
with one processor, speedupS using Amdahl’s Law can
be defined as

(11)

and processor utilizationU ranging from 0 to 1 can be
defined as

(12)

4.3. Run-Time Memory Requirements

The scheduling techniques offered by this paper are
intended to apply to the periodic execution of algorithms.
In many instances, the algorithms may execute indefi-
nitely on an unlimited stream of input data, for example,
digital signal processing algorithms. Even though the
multiprocessor schedules determined by theES Algo-
rithm andLF Algorithm are periodic, it is important
to determine if the memory requirements for the data are
bounded. Just knowing that the memory requirements are
bounded may not be enough. One may also wish to cal-
culate the maximum memory requirements a priori. By
knowing the upper bound on memory, the memory can
be allocated statically at compile time to avoid the
run-time overhead of dynamic memory management.

TBOlb max To
TCE

R
-----------,

 =

TCE Li
i L∈
∑=

R TCE
TBO
------------=

S
TCE
TBO
------------=

U
S
R
---=

11

Since the dataflow graph edges imply physical storage of
the data shared among tasks, graph-theoretic rules are
defined in this section capable of determining the bound
on memory required for the shared data.

To present a slightly more detailed model of parallel
computation of tasks represented by a DFG is helpful for
the following discussion. The Petri net model shown in
figure 10 describes the activities associated with the exe-
cution of ordered dataflow tasks,Ti Tj. A Petri net
such as the one shown in figure 10 is a special class of
Petri nets called a marked graph (ref. 15). This model is
equivalent to the ATAMM computational marked graph
(CMG) shown in references 13, 14, and 16. As shown in
figure 10, the edges directed from left to right represent
dataflow while the edges from right to left represent con-
trol flow. Of particular interest, the edges associated with
the output empty (OE) place can be regarded as an
“acknowledgment edge.” That is, given the data depen-
dency Ti Tj, the acknowledgment edge provides a
signal to nodeTi indicating that nodeTj has consumed a
token from the output full (OF) place. The number of
tokens present at any one time in the OE place represents
the total number of empty data buffers available for out-
put data tokens. The number of buffers currently occu-
pied with data tokens is represented by the number of

tokens in the OF place. Pairing every data edge with an
acknowledgment edge assures that a buffer will be avail-
able for the output data before a task begins execution. A
modeled task is enabled for execution when all necessary
input tokens to theFire transition are available. After
firing, the node will produce a token in thebusy place,
enabling theData transition. TheData transition for
nodeTi of T will generate a token at the output places
after delaying an amount of time equal toLi of L. The
idle place between theData andFire transitions is
included to convey information about task instantiations
at run time. The graph shown in figure 10(b) has been
shown to be consistent (refs. 11 and 15). This implies
that given an initial marking, the total number of tokens
within a circuit remains unchanged for all valid markings
reached by firing transitions. Therefore, the initial num-
ber of tokens located in theidle place will ultimately
migrate to thebusy place; this indicates the number of
task instantiations at run time. Based on equation (6), the
number of tokens that must be present in a circuit for a
given iteration period, TBO, is given by the following
equation

(13)Di
Ci

TBO
------------ for all i circuits()=

(a) DFG model ofTi Tj.

(b) Petri net model.

Figure 10. Petri net representation of dataflow graph.

Ti Tj

IF Fire busy Data OF

OE

idle

Ti Tj

12

and thus the circuit formed by theidle place between
the Data andFire transition implies that the required
number of instantiations of taskTi that was derived from
the TGP diagram is determined by the following
equation:

(14)

Because DFG tokens carry data values (or pointers
to where the data are located when the tokens become
heavy), the DFG edges which transport tokens from one
node to the next, imply physical memory space. Again
relying on the token conservation property, the summa-
tion of the initial OF tokens due to initial data and the ini-
tial number of OE tokens needed to satisfy equation (13)
determines the maximum buffer space required for the
data associated with the DFG edge at run time—ideally,
ignoring fault tolerant issues. The initial tokens required
in the OE and OF places can also be determined from the
TGP diagram, but in a less obvious way.

Initial OE tokens can be determined by examining
the relative firing times of the predecessor and successor
tasks along with the corresponding data set displace-
ments. The OE Rule can be used to determine the initial
number of OE tokens indicating the data buffers that are
initially empty and is as follows:

Let represent the start time of taskTi rel-
ative to a TBO interval as portrayed in the TGP
diagram, and let represent the relative
data set number associated with the start time of
taskTi. The start time can be calculated
directly from the ES ofTi with the equation

(15)

The relative data set number can also be deter-
mined from the TGP diagram or calculated
directly by the equation

(16)

where the floor function is applied to the ratio of
ES(Ti) and TBO, andP is given by equation (2).
Then, given a taskTp, let Ts represent the suc-
cessor task which uses the output data ofTp as
input and OEps be the initial OE tokens required
for the precedence relationTp Ts.

If
Then If

Then
Else

Else

Instantiations ofTi
Li

TBO
------------=

S Ti()

Ds Ti()

S Ti()

S Ti() ES Ti() modulo TBO=

Ds Ti() P
ES Ti()

TBO
-------------------–=

Ds Tp() Ds Ts() 0≥–
S Tp() S Ts()≤
OEps Ds Tp() Ds Ts()– 1+=

OEps Ds Tp() Ds Ts()–=
OEps 0=

In terms of the graph nodes, a negative
 indicates that the successor node has

fired more often than the predecessor node it is depen-
dent on. The only way this could be possible is if there
were initial tokens present in the OF place. A positive
difference represents the number of
times the predecessor node fires before the successor
node fires once. This difference would therefore be the
initial tokens required in the OE place. If

 then the successor node would have
returned the one token required in the OE place for the
predecessor to fire again, and thus no additional tokens
are needed. However, the condition indi-
cates that the predecessor node must fire before or at the
same time the successor node fires and returns the OE
token. Therefore, the condition requires
that one extra token be included initially in the OE place.

For example, theOE Rule utilizing the TGP of
figure 5 for the C F specifies that OECF = 2 or in
other words, two empty data buffers are initially
required. Since the data edge did not have any initial
tokens (no initially full buffers), two buffer spaces would
be required at run time.

There is one item that must be mentioned concerning
the OE Rule . For all practical purposes the in the

 expression can be replaced with a .
This change has the effect of delaying the firing of the
predecessor node by oneFire transition time whenTp
andTs would otherwise start simultaneously. If theFire
transition time which may represent the reading of input
data is considered negligible in the case of large-grained
algorithms, being conservative with tokens (and thus
buffer space) is easily tolerated. The rule represents the
more conservative case in order to satisfy the general
problem. One special case is shown in figure 11 as a
node with a self-recurrence circuit (representing the fact
that the task represented by the node has history). TheOE
Rule would indicate that one initially empty buffer is
needed in addition to the initial data occupying a second
buffer. Use of the conservative token approach would not
make sense in this case because a node that is
self-dependent cannot wait on itself to fire.

TheOE Rule determines the number of data buffers
neededin addition to the buffers required for initial data
for all edges within the DFG. Therefore, the resource
requirements in terms of total buffer space for a given
data edge is equal to the OE tokens given by theOE
Rule plus the number of initial tokens present on the
edge. Calculating resource requirements in terms of pro-
cessors is more straightforward. The minimum processor
requirementR for a given TBO at steady-state can be
derived simply by counting the maximum overlap of bars
within the corresponding TGP. However, theR

Ds Tp() Ds Ts()–

Ds Tp() Ds Ts()–

S Tp() S Ts()>

S Tp() S Ts()≤

S Tp() S Ts()≤

≤
S Tp() S Ts()≤ <

13

determined may not be optimum for a given . For
example, given only three processors, TBOlb for the
DFG of figure 1 by equation (8) is equal to 333, which
by equations (11) and (12) would indicate that three pro-
cessors would provide maximum linear speedup with
100 percent processor utilization. Even though the pro-
cessor requirements for a single graph iteration is three
(determined by counting the maximum overlap of bars in
fig. 8), the processor requirements for repetitive execu-
tion with a period of 333 requires four processors as can
be derived from figure 5. This is because of the fact that
the precedence constraints imposed by makes finding
this optimal solution NP-complete and the design process
presented in this paper only provides the determination
of asufficient number of processors in order to guarantee
a schedule meeting TBO and TBIO requirements
(refs. 9 and 10). In fact, one cannot guarantee that a
multiprocessor-scheduling solution even exists when all
three parameters (TBO, TBIO, andR) are fixed (ref. 9).
Accordingly, it is necessary to find another schedule, if
one exists, that would provide the desired computational
speedup performance; a method for doing so is discussed
in the next section.

(a) Self-loop node.

(b) Petri net model.

Figure 11. Petri model of self-loop circuit.

Ti

IF Fire busy Data OF

OE

idle

Ti

initial data

4.4. Control Edges

Imposing additional precedence constraints or artifi-
cial data dependencies ontoT (thereby changing the
schedule) is a viable way to improve performance (refs. 5
and 17). These artificial data dependencies are referred to
as “control edges.” As an illustration, observe that there
is needless parallelism being exploited for the single
graph execution shown in figure 8; that is, three proces-
sors are not necessary to exploit all of the parallel
concurrency—two would suffice. This presents an
opportunity to take advantage of the slack time present in
the graph to reduce the processor requirement without
affecting the critical path.

Since task C does not need to complete execution
until 500 clock units as shown in figure 8, a control edge
can be included in order to create the precedence rela-
tionship E C effectively delaying task C until the
completion of task E as shown in figure 12. The subse-
quent TGP with the added control edge is shown in

(a) DFG diagram.

(b) SGP diagram.ω = 600 clock units.

Figure 12. Diagrams with E C control edge.

A C F

B

D E

Control edge

F

E

D

C

B

A

100 200 300 400 500 600
Time, clock units

14

figure 13 with the resulting resource envelope showing
the processor utilization over the given TBO period. As
can be seen from figure 13, it is only necessary to effec-
tively move the amount of effort requiring four proces-
sors in such a way as to fill the idle time shown in the
resource envelope. It turns out in this example that this
can be done by delaying task D behind task B (a delay of
67 clock units) in relation to the TGP description of
steady-state behavior. The new TGP diagram can be
derived from the original by shifting all successor tasks
of task D accordingly. The TGP diagram with the added
B D precedence relationship shown in figures 14(a)
and (b) results in 100 percent processor utilization. The
new steady-state SGP shown in figure 14(c) can be con-
structed by shifting tasks D, E, C, and F to the right by
67 clock units, as was done to obtain the new TGP
diagram.

Referring to the new SGP diagram in figure 14(c), it
is apparent that this scheduling solution for optimum
throughput and processor utilization has been achieved at
the cost of increasing TBIO. Inserting the B D prece-

(a) TGP diagram. TBO = 333 clock units.

(b) Resource envelope.

Figure 13. Periodic behavior with E C control edge.

F

E

D

C

B

A

t + TBOt

2

2

2

2

1

1

1

1

4

t + TBOt

3

2

1T
ot

al
 p

ro
ce

ss
or

s
dence relationship to delay the start of task D behind the
start of task B by 67 clock units, resulting in a TBIO of
667 clock units, is an interesting concept. Since we know
that three processors are sufficient for tasks B and D to
start at the same time for the first iteration, the B D
precedence relationship has caused a transient condition.
The reason for this transient becomes apparent by exam-
ining the TGP schedule of figures 14(a) and (b). The
TGP schedule indicates that thenth token (relative data
set number 2) consumed by node D is the th
token (relative data set number 1) produced by the prede-
cessor node B; this implies that one initial token is
required on the B D control edge, as shown in
figure 14(d), to create the single-TBO delay required to
achieve the steady-state schedule shown in figures 14(a)
and (b). Without the single-TBO synchronization delay
due to the initial token, the path
A B C D E F would result in a TBIO
equal to the graph TCE of 1000 rather than 667 clock
units (eq. (7)). This is interesting in that the transients
caused by initial data token delays that tend to compli-
cate the analysis become a useful trait for control edges.
Without initial tokens, control edges have only
intra-iteration precedence relationships between two
tasks and consequently provide only limited rescheduling
options. The rescheduling options are those shown by the
SGP diagram between independent tasks. Control edges
properly initialized with tokens result ininter-iteration
relationships between tasks that provide additional
rescheduling options. Such control edges allow one to
choose rescheduling options from the TGP diagram
which can provide more opportunities to find tasks to
delay behind other tasks.

Up to now, a general rule for calculating OF tokens
was not needed because the initial data tokens are given
by the algorithm description as portrayed in figure 9.
However, with the use of control edges it is necessary to
calculate the required number of OF tokens. The ques-
tion that may have been raised about theOE Rule is
what if is a negative number; this
would mean that the tokens bounded to this edge circuit
are initially located in the OF place. Just like any linear
algebra problem with two unknowns, two rules (equa-
tions) are required in order to solve for the total number
of tokens (OE and OF) needed within a given edge cir-
cuit. This second rule is referred to as the “OF Rule ”
and determines the number of tokens, if any, initially
required on the forward (OF) edge. TheOF Rule is
stated as follows:

Let and represent the start time
and finish time of the tasksTi, respectively, and
let represent the relative data set num-
ber associated with the start of taskTi; ,

n 1–()

Ds Tp() Ds Ts()–

S Ti() F Ti()

Ds Ti()
S Ti()

15

, and are relative to a TBO
interval as portrayed in the TGP diagram. As for
theOE Rule , these values can be obtained from
the TGP diagram or from equations (15)
and (16) with the addition of

(17)

Because the data set number associated with the
start of execution will be greater than the data
set number associated with the completion of a
multiply-instantiated task, let represent
the relative data set number associated with the
finish time of taskTi, which can be calculated
with

(18)

Then, given a taskTp, let Ts represent the suc-
cessor task which uses the output data ofTp as

F Ti() Ds Ti()

F Ti() ES Ti() Li+() modulo TBO=

Df Ti()

Df Ti() P
ES Ti() Li+

TBO
------------------------------–=

input and OFps be the initial OF tokens required
for the precedence relationTp Ts.

If
Then If

Then
Else

Else

In terms of the graph nodes, a negative
 indicates that the predecessor node

has fired more often than its successor node which is the
frequent case. These tokens are accounted for in theOE
Rule . A difference represents
the number of times the successor node fires before the
predecessor node completes just once. The only way this
could occur is if there were initial tokens in the OF place.
This difference would therefore be the number of initial
tokens required in the OF place. If , then
the predecessor node would have deposited the one token
required in the OF place for the successor node to fire
again, and thus no additional tokens are needed. How-
ever, the condition indicates that the

Ds Ts() Df Tp() 0≥–
S Ts() F Tp()<
OFps Ds Ts() Df Tp()– 1+=

OFps Ds Ts() Df Tp()–=
OFps 0=

Ds Ts() Df Tp()–

Ds Ts() Df Tp() 0≥–

S Ts() F Tp()≥

S Ts() F Tp()<

(a) TGP diagram. TBO = 333 clock units. (b) Resource envelope. TBO = 333 clock units.

(c) SGP diagram. TBIO = 667 clock units;ω = 667 clock units. (d) Modified DFG diagram.

Figure 14. Periodic behavior with E C and B D control edges.

F

E

D

C

B

A

t t + TBO

67 1

2

2

2

2

1

1

1

4

t + TBOt

3

2

1T
ot

al
 p

ro
ce

ss
or

s

F

E

D

C

B

A

100 200 300 400 500 700
Time, clock units

600

67

A C F

B

D E

16

successor node must fire before the predecessor node
deposits an OF token. Therefore, the
condition requires that one extra token be included ini-
tially in the OF place.

Applying the conditions shown in figures 14(a)
and (b), theOF Rule indicates that one initial token is
required on the B D control edge as expected from
this discussion. Also, theOF Rule is general enough so
that not only will it compute initial tokens (if any)
required on inter-iteration control edges, but also agree
with initial token conditions on data edges in most cases.
In some cases, initial data tokens may only serve the pur-
pose for which they were intended, that is, to create delay
conditions for computations as portrayed in figure 9.
When initial data tokens also affect the steady-state
schedule, theOF Rule applied to such data edges would
agree with the initial conditions. Just such a case
involves the E D in the example graph. As one would
expect, theOF Rule utilizing the TGP of figure 5 for the
E D edge results in OFED = 1, which indicates that
one initial token is present. Likewise, theOE Rule spec-
ifies that OEED = 0 indicates that an initially empty
buffer is not necessary at run time, thereby the total
buffer space for edge E D is defined as 1. However,
just as the primary purpose of theOE Rule is to compute
the number of data buffers required in addition to the ini-
tial data buffers, the primary purpose of theOF Rule is
to compute initial tokens for inter-iteration control edges.
The OF Rule applied to data edges will only convey
information that the user already knows. Likewise, since
by definition, control edges do not require data buffers,
theOE Rule does not serve a purpose for control edges
unless for some reason the user wanted to implement a
graph management operating system that treated data
edges and control edges the same, except for the attach-
ment of physical buffers.

One last example would be appropriate before pre-
senting the Design Tool which implements the algo-
rithms and rules discussed in this and previous sections.
It has been shown that the addition of the E C and
B D control edges for a TBO of 333 clock units
results in linear speedup with three processors and a
TBIO equal to 667 clock units. Since this particular solu-
tion includes an initial token in the forward direction of
the B D edge, analyzing this graph with theES and
LF Algorithms should confirm the correctness of the
solution. The modified dataflow graph of figure 14(d)
with the additional control edges is shown in figure 15.
Utilization of theES Algorithm results in earliest start
times of ES(A) = 0, ES(B) = ES(A) +L(A) = 100,
ES(D) = ES(A) + L(A) = 100, ES(E) = ES(D)
+ L(D) = 300, ES(C) = ES(E) +L(E) = 400, and
ES(F) = ES(C) +L(C) = ES(B) +L(B) = 500.

S Ts() F Tp()<

The first application of the backward search by the
LF Algorithm beginning at the real sink results in lat-
est finish times of LF(F) = ES(sink) = EF(F) = 600,
LF(B) = LF(F) − L(F) = 500, LF(A) = LF(B)
− L(B) = 100, LF(C) = LF(B) = 500, LF(E) = min[LF(C)
− L(C), LF(F) − L(F)] = 400, LF(D) = LF(E)
− L(E) = 300, and LF(A) = min[LF(B)− L(B), LF(C)
− L(C), LF(D) − L(D)] = 100.

Next, applying theLF Algorithm beginning at the
virtual sink corresponding to the E D data edge
gives an LF time for node E of ES(D) + (1)(TBO) = 100
+ (1)(333) = 433 clock units which is greater than its ear-
liest finish of 400 clock units. Progressing backwards
does not change the latest finish times of nodes A and D.
Finally, applying theLF Algorithm beginning at the
virtual sink corresponding to the B D control
edge gives an LF time for node B of ES(D) + (1)(TBO) =
100 + (1)(333) = 433 clock units. However, since the
previous ES analysis indicates that node B cannot com-
plete until 500 clock units, a transient condition has been
found with a∆ (eq. (5)) equal to 67 clock units. There-
fore, node D initially starts execution as soon as node A
completes during the transient state but at steady state,
node D will be delayed after the completion of node A by
67 clock units. Adding∆ = 67 clock units to the ES time
along the path D E C F results in adjusted
earliest start times of , ,

, and .

Applying the LF Algorithm again at the virtual
sink gives an
equal to the earliest finish time of node B, as expected.
After calculating the latest finish times once more, the
steady-state scheduling contraints in terms of earliest
start and latest finish times are defined. The TBIO is the
earliest start of the sink and is determined to be

 clock units. As a final
check, the TBIO of 667 clock units should agree with

Figure 15. Equivalent MDFG model of figure 14(d).

A C F

B

D E

100 100 100

400

200

100

D

Virtual sink

D´

Virtual sink

D′()

D′()

ES(D)′ 167= ES(E)′ 367=
ES(C)′ 467= ES(F)′ 567=

D′ LF(B) ES(D)′ (1)(333)+ 500= =

EF(F) ES(F)′ L(F)+ 667= =

17

equation (7) which finds the critical path. By
equation (7), the path A B D E C F
(containing all nodes and 1 initial token) has a total
latency of (TCE− (1)(333)) = 667 clock units and is larg-
est over all paths. Thus, the path A B D E

C F is critical. Table I lists the steady-state earli-
est start and latest finish times obtained by applying the
ES andLF Algorithms to the DFG of figure 15. The
reader is invited to construct a single graph play diagram
using the ES times in table I. Likewise, a total graph play
diagram can be constructed by using start times equal to
ES modulo TBO. The SGP and TGP should agree with
figures 14(c) and (a), respectively.

A summary of other DFG attributes for the schedul-
ing solution presented above is also provided in table I.
The attributes listed include task instantiations, data
memory requirements (buffers), and control edges for a
TBO of 333 clock units, while utilizing three processors
100 percent of the time. As noted, this solution is opti-
mum in terms of TBO and processor utilization but is not
optimum in terms of TBIO. Note also that even though
an optimum solution does not exist for this example
where TBO, TBIO, andR are fixed to optimum values,
depending on the real-time constraints of the application,
one could have designed a solution which made other
trade-offs in performance. For example, another solution
might maintain a minimum TBIO of 600 clock units
while letting TBO increase above the lower bound of
333 clock units. In general, depending on the availability
of processors, the user has a two-dimensional region
(TBO by TBIO) in which to make trade-offs. This region
is referred to as an operating point plane in references 5
and 17; TBOlb and TBIOlb define the minimum values
for the two dimensions, respectively.

5. Design Tool

The algorithms and rules presented in the previous
sections have been shown to be applicable to the analysis

of the class of dataflow graphs described in section 1. A
software tool is presented in this section which analyzes
dataflow graphs and implements these design principles
to aid the user in the implementation of a multiprocessing
application. The software, referred to as the “Dataflow
Design Tool,” or “Design Tool” for brevity, was written
in Borland C++2 for Microsoft Windows.3 The software
can be hosted on an i386/486 personal computer or com-
patible. The Design Tool takes input from a text file
which specifies the topology and attributes of the DFG.
A graph-entry tool has been developed to create the DFG
text file. The various displays and features are shown to
provide an automated and interactive design process
which facilitates the selection of a multiprocessor data-
flow solution.

The process flow of the Design Tool, upon loading a
DFG or making modifications to the number of proces-
sors (R), iteration period (TBO), or adding control edges
(new), is shown in figure 16. After loading a DFG,
the Design Tool will search the DFG for circuits in order
to determine the minimum iteration period (To) using
equation (6). The TBO will initially be set to the lower
bound given in equation (8) whereTo is zero if no cir-
cuits are present. The calculatedR will initially be given
by equation (10). Next, the MDFG is automatically con-
structed due to initial tokens, if present, defined by the
algorithm. All further analysis is based on the MDFG
using theES Algorithm andLF Algorithm in order
to determine the TBIO, steady-state scheduleω and
buffer requirements (using theOE/OF Rules). Any
changes to TBO,R, or results in a reapplication of
the analysis algorithms and rules.

The same dataflow graph example shown in figure 1
is used for demonstration purposes. In this way, the tool
can be presented while verifying the theoretical results

2Version 3.1 by Borland International, Inc.
3Version 3.1 by Microsoft Corporation.

Table I. Summary of DFG Attributes for TBO = 333 clock units, TBIO = 667 clock units, andR = 3

Task Latency ES LF Instantiations
Output

task OE OF
Total

buffers
A 100 0 100 1 D

C
B

1
2
1

0
0
0

1
2
1

B 400 100 500 2 D
F

1
2

1
0

2
2

C 100 467 567 1 F 1 0 1
D 200 167 367 1 E 1 0 1
E 100 367 467 1 C

F
D

1
1
0

0
0
1

1
1
1

F 100 567 667 1 Sink 1 0 1

18

obtained in the previous sections. The initial perfor-
mance analysis, without any graph modifications, in
terms of potential speedup is shown in figure 17 for up to
six processors. The performance display shows speedup
verses the number of processors. The display automati-
cally increases or decreases the abscissa each time the
number of processorsR is changed. Figure 17 indicates
that maximum speedup performance is attainable with
four processors; additional processors will not result in
any further speedup. This leveling-off of performance is
attributable to the recurrence loop (circuit) within the
DFG. Without this circuit, the graph-theoretic speedup
would continue to increase linearly with the addition of
processors. Physically speaking, however, this linear
increase in speedup would ultimately break off due to
operating-system overhead, such as synchronization
costs and interprocessor communication.

The Design Tool has a user-interface panel, referred
to as the “Metrics window” as shown in figure 18, con-

Figure 16. The design process.

Analyze DFG
Construct MDFG

Analyze MDFG

Adjust schedule
for new

Create graph
play diagrams

Create
resource

envelopes

√ Critical circuit
TCE
To
TBO
R

√ Earliest start times
Latest finish times
Slack time
P
TBIOlb
Speedup
ω

√ Critical path
TBIO

√ SGP schedule
TGP schedule

√ Resource
 requirements
Resource utilization

√

User input

Output

New , R, TBO ☛

☛

(T, , L, Mo)

taining buttons and menus for displaying performance
bounds, setting TBO andR, or invoking the various
graphic displays. For example, the display shown in
figure 17 can be invoked by pressing thePerfor-
mance button. The time measurements shown in the
Design Tool windows are given in clock units so that the
resolution of the measurement can be user interpreted.
Upon analyzing the DFG, the Design Tool has deter-
mined that TCE is 1000 clock units. The TBIOlb is
defined by equation (7) based on the graph precedence
relations due only to the data dependencies (data-
flow). Due to the critical path A B F, TBIOlb has
been determined to be 600 clock units. The TBIO will be
equal to TBIOlb until additional control edges are added
with the tool, which may change the critical path. The
TBOlb has been calculated to be 300 clock units based on
the critical circuit D E, and consequently, TBO is set
equal to this lower bound. The calculatedR is determined
to be 4, which is the optimum number of processors for
repetitive, steady-state execution at the given TBO and
TBIO.

The SGP window shown in figure 18, created by the
Design Tool, shows the steady-state execution for a sin-
gle iteration. The SGP window can be compared with
that of figure 2. Slack time for task C is shown as an
unshaded bar. Although there is slack between the com-
pletion of task E and the start of task F, the recurrence
relation E D at a TBO of 300 clock units as deter-
mined by equation (4) has reduced the slack of task E to
zero. The window also displays the two TBO-width seg-
ments with a vertical dashed line. Individually controlled
left and right cursors (solid vertical lines) are provided
for taking time measurements. Figure 18 shows the cur-
sors measuring the start and duration time of task C to be
100 clock units each (the “100” next to time at the bot-
tom of the display indicates the left-cursor time, whereas
the “100” in parentheses indicates the time between the
left and right cursors).

Figure 17. Speedup display.

19

Figure 18. Metrics and SGP window displays.

Figure 19. TGP window.

☞

20

The TGP window shown in figure 19 displays the
steady-state schedule of tasks based on the current TBO
value of 300 clock units. The bars are shaded (with col-
ors or patterns) according to the relative data set numbers
shown above the bars. The TGP window has the same
measurements and viewing features as the SGP window,
including the time cursors. The time cursors are posi-
tioned at the far left- and far right-hand sides to indicate
the TBO interval of 300 clock units as shown in paren-
theses. The mouse cursor (shown as a hand) can be used
within the TGP (and SGP) window to point at a bar for
quick access of information as shown to the right of the
TGP window in figure 19 for node B. The information
window shows, among other things, that task B requires
two instantiations at a TBO of 300 clock units. This is
also apparent by observing that there are two overlapped
bars associated with task B for relative data sets 1 and 2.
The circuit-imposed zero slack time of task E is por-
trayed in figure 19 by observing that, even though there
is slack between the completion of task E and the start of

task F, task D requires scheduling at the same time task E
completes. Note also that due to the E D initial
token, task D will execute on a data set injected one TBO
interval later than the data set produced by the comple-
tion of task E.

Figure 20 shows how processor requirements and
utilization can be shown graphically with a resource
envelope diagram. The Design Tool provides a resource
envelope window for both the SGP and TGP displays
referred to as the “single resource envelope” (SRE) and
“total resource envelope” (TRE), respectively. The TRE
window for the TGP of figure 19 is shown in figure 20.
Processor utilization for any time interval defined
between the left and right time cursors is automatically
calculated and displayed in a separate window. The pro-
cessor utilization for the entire TBO interval of 300 clock
units is shown in figure 20, indicating that a maximum of
four processors are required with 83.3 percent utilization.
The Utilization window also shows that, within the same

Figure 20. Total resource envelope window.

21

time interval, three out of the four processors are utilized
100 percent of the time and all four processors are
utilized 33.3 percent of the time. TheComputing
Effort is the area under the envelope curve and is
equal to TCE.

A summary of the task system (T, , L, Mo) is given
by a window referred to as the “graph summary window”
shown in figure 21 for the four-processor, 300-clock-unit
TBO performance level. The graph summary window
displays the values ofL, ES, LF, slack, and instantiations
(INST) for each task inT along with the initial tokens
and queue sizes for each edge in . The ES times shown
in figure 21 are associated with the task start times in
figure 18. It is apparent from this window that task C is
the only task with slack (measured to be 300 clock units)
as already indicated by figure 18. The graph summary
window also indicates the earlier observation that task B
requires two instantiations. The OE/OF column provides
the initial state of the detailed Petri net model of
figure 10 indicating the initial stateMo and maximum
queue size, also shown in the QUEUE column. The
QUEUE column shows that two buffers are required for
the data associated with edges B F and C F.

5.1. Design Tool Use in Graph Optimization

As discussed in the previous section, the example
DFG has the potential of having a speedup performance
of 3 with three processors as indicated by figure 15.
However, the precedence relationship given by the

dataflow may not lend itself to this analysis in terms of
requiring three processors at a TBO of 334 clock units.
Note that the optimum TBO for three processors is
333 1/3 clock units. The Design Tool maintains the
defined precision by rounding fractional times up to the
next integer value. The graph source will ultimately be
controlled to inject data at a rate 1/TBO determined by
the Design Tool such that predictable performance can
be attained and resource saturation avoided. The clock
resolution used in the actual multiprocessing system is
assumed to be the same as that defined for the tool, and
therefore fractional times are rounded to the next clock
unit for proper input-injection control.

The inclusion of additional precedence constraints in
the form of control edges may reduce the processor
requirements of a DFG for a desired level of perfor-
mance. Since such a problem of finding this optimum
solution is NP-complete and requires an exhaustive
search, the Design Tool was developed to aid the user in
finding appropriate control edges when needed and to
make trade-offs when the optimum solution cannot be
found or does not exist (ref. 9). The design of a solution
for a particular TBO, TBIO, andR is ultimately applica-
tion dependent. That is, one application may dictate that
suboptimal graph latency (TBIO > TBIOlb) may be
traded for maximum throughput (1/TBOlb) while another
application may dictate the opposite. An application may
also specify a control/signal processing sampling period
(TBO) and the time lag between graph inputg(t) and
graph outputg(t − TBIO) that is greater than the lower

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for TBO = 300 clock units and TBIO = 600 clock units.

22

bounds determined from graph analysis, possibly making
it easier to find a scheduling solution.

Use of the Design Tool for solving the optimum
three-processor solution is presented as an example since
the results can be compared with the theoretical results in
the previous section. First, the control edge E C
which eliminates the needless parallelism for a single
iteration can be added from the SGP window by selecting
the add Edge menu option as shown in figure 22. Any
control edge added within the SGP window will never be
initialized with tokens resulting in only intra-iteration
precedence relationships. This is the desired effect with
the E C relationship. Upon selecting theadd Edge
menu option, the SGP window will prompt the user for a
terminal node to be delayed by the control edge. Once
the terminal node (task) has been selected as shown in
figure 23, all nodes (tasks) independent of the terminal
node (task C) will be highlighted. These highlighted
nodes become the only candidates for selection as the ini-
tial node. Selection of a dependent node is prohibited

because a circuit would be generated without any tokens;
this is a nonexecutable situation. The use of the informa-
tion window and time cursors may prove useful in mak-
ing use of slack time or delaying tasks such that any

Figure 22. Adding a control edge by using SGP window.

Figure 23. Selecting the initial node of control edge.

☞

23

increase in TBIO is minimized. Since task C, duration of
100 clock units, has 300 clock units of slack time and
task E finishes 100 clock units short of the start of task F,
one can easily see that task C can be delayed behind
task E without increasing TBIO. Selection of node E
causes the Design Tool to create the control edge
E C, reapply the analysis algorithms, and create the
expected SGP shown in figure 24.

The new periodic schedule as a result of the new
E C control edge is shown in figure 25(a) with the
processor utilization portrayed in the TRE window of
figure 25(b). At this point, a search for additional prece-
dence relationships is necessary that could effectively
move the computing effort requiring four processors to
fill in the underutilized idle time requiring only two pro-
cessors. As noted in section 4.4, a control edge creating
the precedence relationship B D provides a solution.
Addition of this control edge is done in the same way as
within the SGP window. However, unlike control edges
added within the SGP window, control edges added from
the TGP window are automatically initialized with
tokens as required to assure the desired steady-state
schedule (using theOE andOF Rules). Insertion of the
B D control edge from within the TGP window
results in the schedule and processor utilization as por-
trayed in figures 26(a) and (b), respectively. It is appar-
ent from figure 26(a) with the two additional precedence
relationships, E C and B D, that an optimum
solution for three processors in terms of throughput has
been found. Note that 0.6 percent of idle time is contrib-
uted to the rounding up of the ideal 333 1/3 clock units
TBO to 334 clock units for implementation purposes. As
mentioned, this solution is only optimal in terms of
throughput due to the 66 clock units delay of node D
(indicated by the left and right cursors in fig. 26(a)).
Since node D lies in the critical path, this delay results in
a TBIO of 666 clock units, as shown by the LF time of
task F in figure 27. The graph summary window in
figure 27 also displays the control edges added for opti-
mization, indicated by asterisks. Referring to the B D
control edge, theOF equal to 1, representing the presence
of one initial token, characterizes the inter-iteration rela-
tionship that is required between B and D (one TBO
delay) to assure the desired schedule in figure 26(a), as
expected from the analysis in the previous section.

5.2. Case Study

Another example is given in this section for the pur-
poses of demonstrating the dependence that steady-state
behavior has on ,Mo, and TBO. The same six-node
graph is utilized except for a different initial markingMo
and the additional precedence constraint between
nodes C and B as shown in figure 28. These differences
result in a new graph which is referred to as “DFG2.”

Figure 24. SGP window with control edge E C.

(a) TGP window.

(b) TRE window.

Figure 25. Windows with control edge E C.

24

(a) TGP window.

(b) TRE window.

Figure 26. Windows with control edges E C and B D.

25

As a result of the additional token in the D E cir-
cuit, the graph-theoretic speedup bound has increased;
therefore a speedup capability up to seven processors
(fig. 29) is provided. The initial token on the B F
edge affects the steady-state performance differently by
making TBIO andω dependent on the iteration period,
TBO. For the purposes of illustrating this effect, the
scheduling solutions for two different iteration periods
are shown. The first example shown in figure 30, which
requires four processors for a TBO of 250 clock units,
results in a TBIO of 500 clock units (indicated in paren-

Figure 28. DFG2 with initial token on forward-directed edge.

A C F

B

D E

100 100 100

400

200 100

SinkSource

theses using the SGP window cursors) which is less than
the graph schedule length of 600 clock units (indicated
next to theSchedule button). At this iteration period,
both tasks B and C have slack time. The slack time of
task B is shown to the left for the convenience of display-
ing an interval equal to the schedule time and because
any delay in the completion of task B affects the execu-
tion (start time of task F) for the next data packet
iteration.

The initial token on the B F edge also has the
potential of causing a transient condition such that

Figure 29. Speedup potential of figure 28 DFG.

Figure 27. Optimized graph summary window of three-processor schedule shown in figure 26(a) for TBO = 334 clock units and
TBIO = 666 clock units.

26

, which has an effect on the
steady-state performance. The second example, shown in
figure 31 for the smallest possible iteration period of
150 clock units for seven processors, results in a sched-
ule length equal to 600 clock units, which is still greater

SGPs-s SGPt-s≠ than the TBIO of the graph; however, the critical path
has changed from the previous example. The Design
Tool has found the critical path to be
A C B F. Also, the initial token at this TBO
performance has caused task F to delay 50 clock units

Figure 30. Dataflow schedule of figure 28 for four processors.

Figure 31. Dataflow schedule of figure 28 for seven processors.

27

(indicated by the SGP window cursors), as compared
with the case shown in figure 30, resulting in a TBIO
equal to 550 clock units. Because the calculated proces-
sors (eq. (10)) are equal to the seven “sufficient” number
of processors (derived from the TGP window) for the
optimum iteration period of 150 clock units, the
steady-state schedule shown in the TGP window is an
optimum solution for this example task system. The TGP
window also shows that the additional pipeline concur-
rency allows the simultaneous execution of four data
packets within a TBO interval.

Figure 32 shows the task system (T, , L, Mo) sum-
mary for a TBO of 150 clock units. The LF of task F with
no slack indicates that the TBIO is 550 clock units. Also,
tasks B and D require three and two instantiations,
respectively. As one might have expected, the queue size
(memory requirements) has increased from the lower
speedup example examined in the previous section
(figs. 20 and 28).

5.3. Algorithm Implementation Performance

The ES Algorithm and theLF Algorithm can
be executed in polynomial time. For typical graphs, the
actual bound is somewhere betweenO(N2) and O(N3)
where equation (1) provides a conservative graph-
dependent bound. The C++ program code for theES
Algorithm and theLF Algorithm is included in the
appendix. This section provides some performance data

on the execution of these algorithms within the Design
Tool.

The performance results of theES Algorithm and
LF Algorithm within the Design Tool were obtained
for the graphs in figures 1, 14(d), and 33. The graph in
figure 33 was chosen as a good test when the graph is
tightly connected. Since the three graphs have six nodes
(N = 6) each, the worst-case complexity is given asN3 or
216. In addition, the graph-dependent bound given by
equation (1) was determined for each graph for compari-
son with the actual complexity. The time it takes to exe-
cute steps 1 through 6 in both theES Algorithm and
the LF Algorithm is assumed to take a constant time

Figure 33. Test graph.

A D

B E

C F

Figure 32. Graph summary of figure 28 for seven processors.

28

of K1 andK2, respectively. The actual time complexityC
to complete theES Algorithm is defined as the num-
ber of times steps 1 through 6 are executed for a given
graph such that the total execution time is on the order of
K1C. Unlike equation (1) which assumes that all nodes
are traversed for every path, theES Algorithm and the
LF Algorithm are more efficient in that each remem-
bers the previous nodes and path latency covered at any
given edge branch. Thus, the actual complexityC will be
less than the bound of equation (1) for most cases.

The performance of the Design Tool was measured
on a Gateway2000 486/33 EISA personal computer. The
computer operated with a 33-MHz clock speed and con-
tained 16 MB of RAM memory. From the performance
results given in table II, theBound (eq. (1)) and actual
complexity C for the graph in figure 33 without initial
tokens are equivalent for both algorithms. However,
since the backward-searchLF Algorithm will encoun-
ter more nodes than the forward-searchES Algorithm
when virtual sinks are present, theBound andC for the
graph in figures 1 and 14(d) with initial tokens are differ-
ent. Note in all cases, however, thatC is less than the
bound given by equation (1) indicating the degree of effi-
ciency in the algorithms.

6. Tool Applications and Future Research

For years, digital signal processing (DSP) systems
have been used to realize digital filters, compute Fourier
transforms, execute data compression algorithms, and a
vast amount of other compute-intensive algorithms.
Today, both government and industry are finding that
computational requirements, especially in real-time sys-
tems, are becoming increasingly more challenging. As a
result, many users are relying on multiprocessing solu-
tions to meet the needs of these problems. To take advan-
tage of multiprocessor architectures, novel methods are
needed to facilitate the mapping of DSP applications
onto multiple processors. Consequently, the DSP market
has exploded with new and innovative DSP hardware
and software architectures which provide mechanisms to
efficiently exploit the parallelism inherent in many DSP
applications. The dataflow paradigm has also been get-
ting considerable attention in the areas of DSP and
real-time systems. The commercial products that are

offered today utilize the dataflow paradigm as a graphi-
cal programming language but do not incorporate data-
flow analyses in designing a multiprocessing solution.
Although there are many advantages to graphical pro-
gramming, the full potential of the dataflow representa-
tion is lost by not utilizing it analytically as well. In the
absence of the analysis/design offered by this software
tool, the commercial tool sets must rely on compile-time
approximate solutions (heuristics) or run-time scheduling
which often results in a trial-and-error design approach.
Not only can this tool lend itself to NASA aerospace
DSP problems, but it is felt that this tool has high com-
mercial potential as well. It could be readily incorporated
into existing commercial DSP tool sets to determine a
desirable multiprocessing solution at compile time. Other
commercial uses of this tool include scheduling of DSP
algorithms for real-time applications, including those
found in aircraft, automotive, and industrial processes.
The tool could also provide front-end scheduling con-
straints for other commercial tools utilizing job-
scheduling algorithms with the potential of finding better
solutions.

Extensions to the Design Tool planned include
incorporating heuristics to automate the selection of con-
trol edges for optimal or near-optimal scheduling solu-
tions. Also, enhancements to the underlying model and
control edge heuristics are planned which will permit the
design of real-time multiprocessing applications for both
hard and soft deadlines (ref. 18). For hard real-time mod-
eling, the design would assume worst-case task latencies.
It has been observed that under such assumptions,
run-time behavior may result in anomalous behavior
such as requiring more processors than indicated from
the worst-case scenario (ref. 19). However, such anoma-
lies can be avoided by inserting additional control edges
which impose stability criteria (ref. 19). Incorporating a
stability criteria algorithm similar to reference 19 would
allow the Design Tool to not only determine control
edges for increased performance, but to also guarantee
hard deadlines. In the context of DSP systems, the
Design Tool is capable of supporting only a single sam-
pling rate per graph. Many DSP algorithms require mul-
tiple sampling rates which is equivalent to graph nodes
consuming and depositing multiple tokens per firing as

Table II. Design Tool Performance Results

Graph in

figure—

ES Algorithm LF Algorithm

Bound C Duration,µs Bound C Duration,µs

1 10 8 297 13 12 665

15(b) 15 10 390 20 18 920

34 64 32 934 64 32 1214

29

opposed to only one token. Enhancements are planned to
the graph-analysis techniques which will support multi-
ple sampling rates within a DSP algorithm.

7. Concluding Remarks

Graph-searching algorithms were defined and shown
to effectively determine scheduling constraints on a task
system represented by a dataflow graph. The dataflow
graph was shown to determine performance bounds
inherent in the task system, task instantiations, and buffer
requirements for the data shared between tasks. Gantt
charts were shown to be useful in depicting periodic task
schedules, scheduling constraints, processor require-
ments, and processor utilization based on the dataflow
graph analysis. An equivalent modified dataflow graph
was presented for the modeling of initial conditions in
the graph. Such initial conditions were not only shown to
complicate the calculation of task mobility but may also
cause a transient condition. A timing relationship
imposed on the modified graph was shown to separate

the steady-state behavior from the transient state. A soft-
ware implementation of the design algorithms and proce-
dures referred to as the “Design Tool” was presented and
shown to facilitate the selection of a graph-theoretic
multiprocessing solution. The addition of artificial data
dependencies (control edges) was shown to be a viable
technique for improving scheduling performance by
reducing the processor requirements. The selection of an
optimum solution is based on user-selected criteria, that
is, a particular TBO (time between outputs), TBIO (time
between input and output), andR (number of required
processors) or trade-offs when a solution which opti-
mizes all three parameters cannot be found or may not
exist. Optimizations with the use of the Design Tool by
inserting control edges were demonstrated.

NASA Langley Research Center
Hampton, VA 23681-0001
February 1, 1995

30

Appendix

Implementation of ES Algorithm and LF Algorithm

The C++ program code which implements theES andLF Algorithms is provided in this appendix. These func-
tions are private to the C++Graph object which constructs and analyzes the dataflow graph. TheSearchFwd function
is called by thefindEarliestStart function to provide a depth-first search of the graph and determine the earliest
start times of all nodes. TheSearchBkwd function effectively mirrors theSearchFwd function to provide a
depth-first search of the graph in the opposite direction. TheSearchFwd andSearchBkwd functions are used by the
findLatestFinish function to determine the latest finish times of all nodes.

//Declaration of node and edge types
// DATA......data edges found in graph text file,
// CONTROL...control edges already present in graph text file,
// NEW.......control edges added by this tool,
// VIRTUAL...fictitious edges added to model inter-iteration dependencies, and
// SPECIAL...control edges added to source input for input injection control.

enum nodetype { NODE, SOURCE, SINK, VIRTUAL_SOURCE, VIRTUAL_SINK };

enum edgetype { DATA, CONTROL, NEW, VIRTUAL, SPECIAL };

typedef int ClockTicks;

struct Times { ClockTicksread, //time to read input data
process, //time to process data
write, //time to write output data
earliest_start,//earliest possible start time
latest_finish, //latest finish time
fire; }; //time to fire node

class Node { char name[SIZE]; //node name
nodetype type; //node type
int number, //node #

graph, //graph #
priority, //task priority
instances, //required instantiations
data_set; //relative data set #
Times time; //node times

public:
class Node *previous, *next;
class Edge *input, *output;

public/private methods...; };

class Edge { int number, //edge #
token_limit, //queue size = initially empty + initially full
tokens, //initial tokens = initially full queue slots
edgetype type; //edge type

public:
class Edge *previous, *next;
class Node *initial, *terminal;

31

class Edge *next_input, *next_output;

public/private methods...; };

// SearchFwd(Edge*, ClockTicks)
// Implements a forward search of the graph starting from an Edge until
// a sink is found. Used by findEarliestStart and findLatestFinish.

void SearchFwd(Edge *edgeptr, ClockTicks latency)
{

while (edgeptr != NULL)
{
if (edgeptr->next_output != NULL)

SearchFwd(edgeptr->next_output, latency);

nodeptr = edgeptr->terminal;

// exclude SPECIAL edges, which terminate on sources
if (edgeptr->terminal->Type() == SOURCE)

return;

if (latency > nodeptr->GetES())
nodeptr->SetES(latency);

if (nodeptr->Type() == NODE)
latency += nodeptr->Latency();

edgeptr = nodeptr->output;

} //end while
return;

}//end.

// findEarliestStart()
// Determine the earliest start times of all nodes by searching forward from
// all sources. Calls SearchFwd.

void findEarliestStart()
{

Node *nodeptr;

//initialize earliest start times to zero
for (nodeptr = first_node; nodeptr != NULL; nodeptr = nodeptr->next;)

nodeptr->SetES(0);

nodeptr = first_node;

while (nodeptr != NULL)
{
//find and hold the place of a source
while ((nodeptr->Type() != SOURCE) &&

(nodeptr->Type() != VIRTUAL_SOURCE) &&
(nodeptr->next != NULL))

nodeptr = nodeptr->next;

32

if ((nodeptr->Type() == SOURCE) ||
(nodeptr->Type() == VIRTUAL_SOURCE))
SearchFwd(nodeptr->output, 0);

nodeptr = nodeptr->next;

}//end while
return;

}//end.

// SearchBkwd(Edge *, ClockTicks)
// Implements a backward search of the graph from an Edge until a source is
// found. Used by findLatestFinish.

void SearchBkwd(Edge *edgeptr, ClockTicks latency)
{

while (edgeptr != NULL)
{
if (edgeptr->next_input != NULL)

SearchBkwd(edgeptr->next_input, latency);

nodeptr = edgeptr->initial;

//determine latest finish time
if (latency < nodeptr->GetLF())

nodeptr->SetLF(latency);

if (nodeptr->Type() == NODE)
latency -= nodeptr->Latency();

if ((nodeptr->Type() == SOURCE) ||
(nodeptr->Type() == VIRTUAL_SOURCE))

return;

edgeptr = nodeptr->input;

}// end while
return;

}// end.

// findLatestFinish()
// Determine the latest finish times of all nodes by searching backward from
// all sinks. For sinks created from edges with initial tokens, the latest
// finish rule states: LF(Sink) = ES(Nt) + d * TBO where Nt is the terminal
// node of original edge (sink now points to this node) and d is the number of
// initial tokens on the original edge. Calls SearchBkwd and SearchFwd.

void findLatestFinish()
{

ClockTicks ES, LF, delta;
struct Node *nodeptr, *succ_node;
BOOL Done = FALSE;

33

while (!Done)
{
Done = TRUE;

//initialize latest finish times to maximum storage value
for (nodeptr = first_node; nodeptr != NULL; nodeptr = nodeptr->next;)

nodeptr->SetLF(0x7FFF);

nodeptr = first_node;

while (nodeptr != NULL)
{
//find and hold the place of a sink
while ((nodeptr->Type() != SINK) &&

(nodeptr->Type() != VIRTUAL_SINK) &&
(nodeptr->next != NULL))

nodeptr = nodeptr->next;

if ((nodeptr->Type() == SINK) ||
(nodeptr->Type() == VIRTUAL_SINK))

{
//if sink is a result of initial tokens on an edge then
// LF(sink) = ES(terminal node) + d*TBO
if (nodeptr->Type() == VIRTUAL_SINK)

{
// node receiving tokens from sink
succ_node = getNode(nodeptr->Name());

LF = succ_node->GetES() + (nodeptr->input->Tokens() * TBO);

// If delta = EF - LF > 0 then a timing violation has been
// detected. Must increase ES(terminal node) by delta to satisfy
// timing relationship. After doing so, propagate the updated
// ES time to all descendents. Note: EF of initial node is
// equal to ES of sink.

if ((delta = nodeptr->GetES() - LF) > 0)
{
Done = FALSE;

ES = succ_node->GetES() + delta;

//Delay the start time of node
succ_node->SetES(ES);

// Propagate the updated ES to all descendents
SearchFwd(succ_node->output, ES + succ_node->Latency());

LF += delta;

}//end if delta > 0

}//end if virtual sink due to initial tokens

34

else LF = nodeptr->GetES();

SearchBkwd(nodeptr->input, LF);

}//end if sink

nodeptr = nodeptr->next;

}//end while more paths
}//end while not Done

return;
}//end.

35

References

1. Deshpande, Akshay K.; and Kavi, Krishna M.: A Review of
Specification and Verification Methods for Parallel Programs,
Including the Dataflow Approach.Proc. IEEE, vol. 77, no. 12,
Dec. 1989, pp. 1816–1828.

2. Culler, David E.: Resource Requirements of Dataflow Pro-
grams.Proceedings of the 15th Annual International Sympo-
sium on Computer Architecture, IEEE, 1988, pp. 141–150.

3. Parhi, Keshab K.; and Messerschmitt, David G.: Static
Rate-Optimal Scheduling of Iterative Data-Flow Programs Via
Optimum Unfolding. IEEE Trans. Computers, vol. 40, no. 2,
Feb. 1991, pp. 178–195.

4. Kavi, Krishna M.; Buckles, Billy P.; and Bhat, U. Narayan:
Isomorphisms Between Petri Nets and Dataflow Graphs.
IEEE Trans. Softw. Eng., vol. SE-13, no. 10, Oct. 1987,
pp. 1127–1134.

5. Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour,
M.; and Mandala, B.:Algorithm to Architecture Mapping
Model (ATAMM) Multicomputer Operating System Functional
Specification. NASA CR-4339, 1990.

6. Hayes, P. J.; Jones, R. L.; Benz, H. F.; Andrews, A. M.; and
Malckpour, M. R.: Enhanced ATAMM Implementation on a
GVSC Multiprocessor.GOMAC/1992 Digest of Papers, 181,
Nov. 1992.

7. Jones, Robert L.; Stoughton, John W.; and Mielke, Roland R.:
Analysis Tool for Concurrent Processing Computer Systems.
IEEE Proceedings of the Southeastcon ‘91, Volume 2, 1991.

8. Storch, Matthew:A Comparison of Multiprocessor Scheduling
Methods for Iterative Data Flow Architectures. NASA
CR-189730, 1993.

9. Heemstra de Groot, Sonia M.; Gerez, Sabih H.; and Herrmann,
Otto E.: Range-Chart-Guided Iterative Data-Flow Graph
Scheduling.IEEE Trans. Circuits & Syst., vol. 39, no. 5, May
1992, pp. 351–364.

10. Coffman, E. G., ed.:Computer and Job-Shop Scheduling
Theory. John Wiley & Sons, Inc., 1976.

11. Som, Sukhamoy; Stoughton, John W.; and Mielke, Roland:
Strategies for Concurrent Processing of Complex Algorithms
in Data Driven Architectures. NASA CR-187450, 1990.

12. Lee, Edward Ashford: Consistency in Dataflow Graphs.IEEE
Trans. Parallel & Distrib. Syst., vol. 2, no. 2, Apr. 1991,
pp. 223–235.

13. Som, S.; Mielke, R. R.; and Stoughton, J. W.: Effects of
Resource Saturation in Real-Time Computing on Data Flow
Architectures.Twenty-Fifth Asilomer Conference on Signals,
Systems & Computers, Volume 1, IEEE, 1991.

14. Mielke, Roland R.; Stoughton, John W.; and Som, Sukhamoy:
Modeling and Optimum Time Performance for Concurrent
Processing. NASA CR-4167, 1988.

15. Murata, Tadao: Petri Nets: Properties, Analysis and Applica-
tions.Proc. IEEE, vol. 77, no. 4, Apr. 1989, pp. 541–580.

16. Jones, R. L.; Hayes, P. J.; Andrews, A. M.; Som, S.;
Stoughton, J. W.; and Mielke, R. R.: Enhanced ATAMM for
Increased Throughput Performance of Multicomputer Data
Flow Architectures. IEEE Proceeding of the NAECON 91,
Volume 1, 1991.

17. Som, S.; Obando, R.; Mielke, R. R.; and Stoughton, J. W.:
ATAMM: A Computational Model for Real-Time Data Flow
Architectures.Int. J. Mini & Microcomput., vol. 15, no. 1,
1993, pp. 11–22.

18. Stankovic, John A.; and Ramamritham, Krithi: What is Pre-
dictability for Real-Time Systems?Real-Time Syst., vol. 2,
1990, pp. 247–254.

19. Manacher, G. K.: Production and Stabilization of Real-Time
Task Schedules.J. Assoc. Comput. Mach., vol. 14, no. 3, July
1967, pp. 439–465.

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANZATION NAME(S) AND ADDRESS(ES)

9. SPONSORIING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

REPORT DOCUMENTATION PAGE

April 1995 Technical Paper

Design Tool for Multiprocessor Scheduling and Evaluation of Iterative
Dataflow Algorithms WU 233-01-03

Robert L. Jones III

L-17408

NASA TP-3491

A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution
for a class of computational problems. The problems of interest are those that can be described with a dataflow
graph and are intended to be executed repetitively on a set of identical processors. Typical applications include sig-
nal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and
shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The soft-
ware tool applies the design process to a given problem and includes performance optimization through the inclu-
sion of additional precedence constraints among the schedulable tasks.

Multiprocessing; Real-time processing; Scheduling theory; Graph-theoretical model;
Graph-search algorithms; Dataflow paradigm; Petri net; Performance metrics;
Computer-aided design; Digital signal processing; Control law

40

A03

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified–Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

Unclassified Unclassified Unclassified

